Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
1.
Mol Genet Metab ; 141(3): 108140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262289

RESUMO

Tay-Sachs disease is a rare lysosomal storage disorder (LSD) caused by a mutation in the HexA gene coding ß-hexosaminidase A enzyme. The disruption of the HexA gene causes the accumulation of GM2 ganglioside resulting in progressive neurodegeneration in humans. Surprisingly, Hexa-/- mice did not show neurological phenotypes. Our group recently generated a murine model of Tay-Sachs disease exhibiting excessive GM2 accumulation and severe neuropathological abnormalities mimicking Tay-Sachs patients. Previously, we reported impaired autophagic flux in the brain of Hexa/-Neu3-/- mice. However, regulation of autophagic flux using inducers has not been clarified in Tay-Sachs disease cells. Here, we evaluated the effects of lithium treatment on dysfunctional autophagic flux using LC3 and p62 in the fibroblast and neuroglia of Hexa-/-Neu3-/- mice and Tay-Sachs patients. We discovered the clearance of accumulating autophagosomes, aggregate-prone metabolites, and GM2 ganglioside under lithium-induced conditions. Our data suggest that targeting autophagic flux with an autophagy inducer might be a rational therapeutic strategy for the treatment of Tay-Sachs disease.


Assuntos
Doença de Tay-Sachs , Humanos , Camundongos , Animais , Doença de Tay-Sachs/tratamento farmacológico , Doença de Tay-Sachs/genética , Lítio/farmacologia , Lítio/uso terapêutico , Gangliosídeo G(M2) , Autofagia , Compostos de Lítio/uso terapêutico , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo , beta-N-Acetil-Hexosaminidases/uso terapêutico
2.
Eur J Neurol ; 31(1): e16069, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37754769

RESUMO

BACKGROUND AND PURPOSE: Tay-Sachs disease is a rare and often fatal, autosomal recessive, lysosomal storage disease. Deficiency in ß-hexosaminidase leads to accumulation of GM2 ganglioside resulting in neuronal swelling and degeneration. Typical onset is in infancy with developmental regression and early death. Late-onset Tay-Sachs disease (LOTS) is extremely rare, especially in the non-Ashkenazi Jewish population, and is characterized by a more indolent presentation typically encompassing features of cerebellar and anterior horn cell dysfunction in addition to extrapyramidal and neuropsychiatric symptoms. CASES: A case series of four unrelated patients of non-Ashkenazi Jewish origin with a predominantly, and in some cases pure, neuromuscular phenotype with evidence of a motor neuronopathy on electromyography is presented. Cerebellar atrophy, reported to be a ubiquitous feature in LOTS, was absent in all patients. CONCLUSION: This case series provides evidence to support a pure neuromuscular phenotype in LOTS, which should be considered in the differential diagnosis of anterior horn cell disorders.


Assuntos
Transtornos Mentais , Doença de Tay-Sachs , Humanos , Doença de Tay-Sachs/diagnóstico , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/psicologia , Fenótipo , Cerebelo
3.
Orphanet J Rare Dis ; 18(1): 52, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907859

RESUMO

BACKGROUND: Tay-Sachs disease (TSD), an autosomal recessively inherited neurodegenerative lysosomal storage disease, reported worldwide with a high incidence among population of Eastern European and Ashkenazi Jewish descent. Mutations in the alpha subunit of HEXA that encodes for the ß-hexosaminidase-A lead to deficient enzyme activity and TSD phenotype. This study is the first to highlight the HEXA sequence variations spectrum in a cohort of Egyptian patients with infantile TSD. RESULTS: This study involved 13 Egyptian infant/children patients presented with the infantile form of TSD, ten of the 13 patients were born to consanguineous marriages. ß-hexosaminidase-A enzyme activity was markedly reduced in the 13 patients with a mean activity of 3 µmol/L/h ± 1.56. Sanger sequencing of the HEXA' coding regions and splicing junctions enabled a detection rate of ~ 62% (8/13) in our patients revealing the molecular defects in eight patients; six homozygous-mutant children (five of them were the product of consanguineous marriages) and two patients showed their mutant alleles in heterozygous genotypes, while no disease-causing mutation was identified in the remaining patients. Regulatory intragenic mutations or del/dup may underlie the molecular defect in those patients showing no relevant pathogenic sequencing variants or in the two patients with a heterozygous genotype of the mutant allele. This research identified three novel, likely pathogenic variants in association with the TSD phenotype; two missense, c.920A > C (E307A) and c.952C > G (H318D) in exon 8, and a single base deletion c.484delG causing a frameshift E162Rfs*37 (p.Glu162ArgfsTer37) in exon 5. Three recurrent disease-causing missense mutations; c.1495C > T (R499C), c.1511G > A(R504H), and c.1510C > T(R504C) in exon 13 were identified in five of the eight patients. None of the variants was detected in 50 healthy Egyptians' DNA. Five variants, likely benign or of uncertain significance, S3T, I436V, E506E, and T2T, in exons 1, 11,13, & 1 were detected in our study. CONCLUSIONS: For the proper diagnostics, genetic counseling, and primary prevention, our study stresses the important role of Next Generation Sequencing approaches in delineating the molecular defect in TSD-candidate patients that showed negative Sanger sequencing or a heterozygous mutant allele in their genetic testing results. Interestingly, the three recurrent TSD associated mutations were clustered on chromosome 13 and accounted for 38% of the HEXA mutations detected in this study. This suggested exon 13 as the first candidate for sequencing screening in Egyptian patients with infantile TSD. Larger studies involving our regional population are recommended, hence unique disease associated pathogenic variations could be identified.


Assuntos
Doença de Tay-Sachs , Cadeia alfa da beta-Hexosaminidase , Humanos , Cadeia alfa da beta-Hexosaminidase/química , Cadeia alfa da beta-Hexosaminidase/genética , beta-N-Acetil-Hexosaminidases/genética , Egito , Hexosaminidase A/genética , Mutação , Doença de Tay-Sachs/genética , Lactente
5.
J Inherit Metab Dis ; 46(4): 687-694, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36700853

RESUMO

Treatment of monogenic disorders has historically relied on symptomatic management with limited ability to target primary molecular deficits. However, recent advances in gene therapy and related technologies aim to correct these underlying deficiencies, raising the possibility of disease management or even prevention for diseases that can be treated pre-symptomatically. Tay-Sachs disease (TSD) would be one such candidate, however very little is known about the presymptomatic stage of TSD. To better understand the effects of TSD on brain development, we evaluated the transcriptomes of human fetal brain samples with biallelic pathogenic variants in HEXA. We identified dramatic changes in the transcriptome, suggesting a perturbation of normal development. We also observed a shift in the expression of the sphingolipid metabolic pathway away from production of the HEXA substrate, GM2 ganglioside, presumptively to compensate for dysfunction of the enzyme. However, we do not observe transcriptomic signatures of end-stage disease, suggesting that developmental perturbations precede neurodegeneration. To our knowledge, this is the first report of the relationship between fetal disease pathology in juvenile onset TSD and the analysis of gene expression in fetal TSD tissues. This study highlights the need to better understand the "pre-symptomatic" stage of disease to set realistic expectations for patients receiving early therapeutic intervention.


Assuntos
Gangliosidoses GM2 , Doença de Tay-Sachs , Humanos , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/metabolismo , Doença de Tay-Sachs/patologia , Gangliosidoses GM2/genética , Gangliosidoses GM2/metabolismo , Encéfalo/patologia , Expressão Gênica
6.
Mol Genet Metab ; 138(2): 106983, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36709536

RESUMO

GM2-Gangliosidosis are a group of inherited lysosomal storage pathologies characterized by a large accumulation of GM2 ganglioside in the lysosome. They are caused by mutation in HEXA or HEXB causing reduced or absent activity of a lysosomal ß-hexosaminidase A, or mutation in GM2A causing defect in GM2 activator protein (GM2AP), an essential protein for the activity of the enzyme. Biochemical diagnosis relies on the measurement of ß-hexosaminidases A and B activities, which is able to detect lysosomal enzyme deficiency but fails to identify defects in GM2AP. We developed a rapid, specific and sensitive liquid chromatography-mass spectrometry-based method to measure simultaneously GM1, GM2, GM3 and GD3 molecular species. Gangliosides were analysed in plasma from 19 patients with GM2-Gangliosidosis: Tay-Sachs (n = 9), Sandhoff (n = 9) and AB variant of GM2-Gangliosidosis (n = 1) and compared to 20 age-matched controls. Among patients, 12 have a late adult-juvenile-onset and 7 have an infantile early-onset of the disease. Plasma GM2 molecular species were increased in all GM2-Gangliosidosis patients (19/19), including the patient with GM2A mutation, compared to control individuals and compared to patients with different other lysosomal storage diseases. GM234:1 and GM234:1/GM334:1 ratio discriminated patients from controls with 100% sensitivity and specificity. GM234:1 and GM234:1/GM334:1 were higher in patients with early-onset compared to those with late-onset of the disease, suggesting a relationship with severity. Longitudinal analysis in one adult with Tay-Sachs disease over 9 years showed a positive correlation of GM234:1 and GM234:1/GM334:1 ratio with age at sampling. We propose that plasma GM2 34:1 and its ratio to GM3 34:1 could be sensitive and specific biochemical diagnostic biomarkers for GM2-Gangliosidosis including AB variant and could be useful as a first line diagnostic test and potential biomarkers for monitoring upcoming therapeutic efficacy.


Assuntos
Gangliosidoses GM2 , Doença de Sandhoff , Doença de Tay-Sachs , Adulto , Humanos , Gangliosídeos/metabolismo , Gangliosídeo G(M2)/metabolismo , Gangliosidoses GM2/diagnóstico , Gangliosidoses GM2/genética , Doença de Tay-Sachs/diagnóstico , Doença de Tay-Sachs/genética , Hexosaminidase A , Biomarcadores , Doença de Sandhoff/diagnóstico , Doença de Sandhoff/genética , Doença de Sandhoff/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
7.
Rev. bras. oftalmol ; 82: e0017, 2023. graf
Artigo em Português | LILACS | ID: biblio-1431668

RESUMO

RESUMO A doença de Tay-Sachs é um distúrbio neurodegenerativo autossômico recessivo, o qual envolve o metabolismo dos lipídios, levando ao acúmulo de gangliosídeos nos tecidos, devido à deficiência da enzima hexosaminidase A. Esse depósito progressivo resulta em perda da função neurológica e, quando acomete as células ganglionares da mácula, causa o achado típico da doença, a "mácula em cereja". A patologia é diagnosticada por meio dos níveis de hexosaminidase A e hexosaminidase total no soro, além análise do DNA do gene HEXA. Este caso relata uma criança com doença de Tay-Sachs cujo diagnóstico foi suspeitado por conta dos achados oftalmológicos.


ABSTRACT Tay-Sachs Disease is an autosomal recessive neurodegenerative disorder, which involves the metabolism of lipids, leading to the accumulation of gangliosides in the tissues, due to the deficiency of the enzyme Hexosaminidase A. This progressive deposit results in loss of neurological function and, when it affects macula ganglion cells, it causes the typical disease finding, the "cherry red spot". The pathology is diagnosed through the levels of Hex A and total Hexosaminidase in the serum, in addition to the analysis of the DNA of the HEXA gene. This case reports a child with Tay-Sachs disease with a suspected diagnosis was through ophthalmologic findings.


Assuntos
Humanos , Masculino , Lactente , Doenças Retinianas/etiologia , Doença de Tay-Sachs/complicações , Doença de Tay-Sachs/genética , Retina , Doenças Retinianas/diagnóstico , Doença de Tay-Sachs/diagnóstico , Imageamento por Ressonância Magnética , Hexosaminidase A/genética , Macula Lutea/patologia
8.
Genet Med ; 24(12): 2434-2443, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36194207

RESUMO

PURPOSE: Gangliosidoses are a group of inherited neurogenetic autosomal recessive lysosomal storage disorders usually presenting with progressive macrocephaly, developmental delay, and regression, leading to significant morbidity and premature death. A quantitative definition of the natural history would support and enable clinical development of specific therapies. METHODS: Single disease registry of 8 gangliosidoses (NCT04624789). Cross-sectional analysis of baseline data in N = 26 patients. Primary end point: disease severity assessed by the 8-in-1 score. Secondary end points: first neurologic sign or symptom observed (1) by parents and (2) by physicians, diagnostic delay, as well as phenotypical characterization. Tertiary end points: neurologic outcomes (development, ataxia, dexterity) and disability. RESULTS: The 8-in-1 score quantitatively captured severity of disease. Parents recognized initial manifestations (startle reactions) earlier than physicians (motor developmental delay and hypotonia). Median diagnostic delay was 3.16 (interquartile range 0.69-6.25) years. In total, 8 patients presented with late-infantile phenotypes. CONCLUSION: Data in this registry raise awareness of these rare and fatal conditions to accelerate diagnosis, inform counseling of afflicted families, define quantitative end points for clinical trials, and can serve as historical controls for future therapeutic studies. We provide further insight into the rare late-infantile phenotype for GM2-gangliosidosis. Longitudinal follow up is planned.


Assuntos
Gangliosidoses GM2 , Gangliosidoses , Doença de Tay-Sachs , Humanos , Estudos Transversais , Gangliosidoses GM2/diagnóstico , Gangliosidoses GM2/terapia , Diagnóstico Tardio , Gangliosidoses/diagnóstico , Sistema de Registros , Doença de Tay-Sachs/genética
9.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142595

RESUMO

The gangliosidoses GM2 are a group of pathologies mainly affecting the central nervous system due to the impaired GM2 ganglioside degradation inside the lysosome. Under physiological conditions, GM2 ganglioside is catabolized by the ß-hexosaminidase A in a GM2 activator protein-dependent mechanism. In contrast, uncharged substrates such as globosides and some glycosaminoglycans can be hydrolyzed by the ß-hexosaminidase B. Monogenic mutations on HEXA, HEXB, or GM2A genes arise in the Tay-Sachs (TSD), Sandhoff (SD), and AB variant diseases, respectively. In this work, we validated a CRISPR/Cas9-based gene editing strategy that relies on a Cas9 nickase (nCas9) as a potential approach for treating GM2 gangliosidoses using in vitro models for TSD and SD. The nCas9 contains a mutation in the catalytic RuvC domain but maintains the active HNH domain, which reduces potential off-target effects. Liposomes (LPs)- and novel magnetoliposomes (MLPs)-based vectors were used to deliver the CRISPR/nCas9 system. When LPs were used as a vector, positive outcomes were observed for the ß-hexosaminidase activity, glycosaminoglycans levels, lysosome mass, and oxidative stress. In the case of MLPs, a high cytocompatibility and transfection ratio was observed, with a slight increase in the ß-hexosaminidase activity and significant oxidative stress recovery in both TSD and SD cells. These results show the remarkable potential of CRISPR/nCas9 as a new alternative for treating GM2 gangliosidoses, as well as the superior performance of non-viral vectors in enhancing the potency of this therapeutic approach.


Assuntos
Gangliosidoses GM2 , Doença de Tay-Sachs , Desoxirribonuclease I/metabolismo , Fibroblastos/metabolismo , Proteína Ativadora de G(M2) , Gangliosídeo G(M2)/genética , Gangliosídeo G(M2)/metabolismo , Gangliosidoses GM2/genética , Gangliosidoses GM2/metabolismo , Gangliosidoses GM2/terapia , Edição de Genes , Globosídeos/metabolismo , Glicosaminoglicanos/metabolismo , Hexosaminidase A/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Lipossomos/metabolismo , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/metabolismo , Doença de Tay-Sachs/terapia , beta-N-Acetil-Hexosaminidases/metabolismo
11.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(6): 699-704, 2022 Jun 15.
Artigo em Chinês | MEDLINE | ID: mdl-35762438

RESUMO

A boy, aged 5 years, attended the hospital due to progressive psychomotor regression for 2.5 years. Motor function regression was the main manifestation in the early stage, and brain MRI and whole-exome sequencing (WES) of the family showed no abnormalities. After the age of 4 years and 9 months, the boy developed cognitive function regression, and brain MRI showed cerebellar atrophy. The reanalysis of WES results revealed a compound heterozygous mutation, [NM_000520, c.784C>T(p.His262Tyr]), c.1412C>T(p.Pro471Leu)], in the HEXA gene. The enzyme activity detection showed a significant reduction in the level of ß-hexosaminidase encoded by this gene. The boy was diagnosed with juvenile Tay-Sachs disease (TSD). TSD has strong clinical heterogeneity, and cerebellar atrophy may be an important clue for the diagnosis of juvenile TSD. The reanalysis of genetic data when appropriate based on disease evolution may improve the positive rate of WES.


Assuntos
Doença de Tay-Sachs , Atrofia , Humanos , Imageamento por Ressonância Magnética , Masculino , Mutação , Doença de Tay-Sachs/diagnóstico , Doença de Tay-Sachs/genética
12.
J Enzyme Inhib Med Chem ; 37(1): 1364-1374, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35575117

RESUMO

The late-onset form of Tay-Sachs disease displays when the activity levels of human ß-hexosaminidase A (HexA) fall below 10% of normal, due to mutations that destabilise the native folded form of the enzyme and impair its trafficking to the lysosome. Competitive inhibitors of HexA can rescue disease-causative mutant HexA, bearing potential as pharmacological chaperones, but often also inhibit the enzyme O-glucosaminidase (GlcNAcase; OGA), a serious drawback for translation into the clinic. We have designed sp2-iminosugar glycomimetics related to GalNAc that feature a neutral piperidine-derived thiourea or a basic piperidine-thiazolidine bicyclic core and behave as selective nanomolar competitive inhibitors of human Hex A at pH 7 with a ten-fold lower inhibitory potency at pH 5, a good indication for pharmacological chaperoning. They increased the levels of lysosomal HexA activity in Tay-Sachs patient fibroblasts having the G269S mutation, the highest prevalent in late-onset Tay-Sachs disease.


Assuntos
Doença de Tay-Sachs , Hexosaminidase A/genética , Humanos , Lisossomos , Piperidinas , Doença de Tay-Sachs/tratamento farmacológico , Doença de Tay-Sachs/genética , beta-N-Acetil-Hexosaminidases
14.
Nat Med ; 28(2): 251-259, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145305

RESUMO

Tay-Sachs disease (TSD) is an inherited neurological disorder caused by deficiency of hexosaminidase A (HexA). Here, we describe an adeno-associated virus (AAV) gene therapy expanded-access trial in two patients with infantile TSD (IND 18225) with safety as the primary endpoint and no secondary endpoints. Patient TSD-001 was treated at 30 months with an equimolar mix of AAVrh8-HEXA and AAVrh8-HEXB administered intrathecally (i.t.), with 75% of the total dose (1 × 1014 vector genomes (vg)) in the cisterna magna and 25% at the thoracolumbar junction. Patient TSD-002 was treated at 7 months by combined bilateral thalamic (1.5 × 1012 vg per thalamus) and i.t. infusion (3.9 × 1013 vg). Both patients were immunosuppressed. Injection procedures were well tolerated, with no vector-related adverse events (AEs) to date. Cerebrospinal fluid (CSF) HexA activity increased from baseline and remained stable in both patients. TSD-002 showed disease stabilization by 3 months after injection with ongoing myelination, a temporary deviation from the natural history of infantile TSD, but disease progression was evident at 6 months after treatment. TSD-001 remains seizure-free at 5 years of age on the same anticonvulsant therapy as before therapy. TSD-002 developed anticonvulsant-responsive seizures at 2 years of age. This study provides early safety and proof-of-concept data in humans for treatment of patients with TSD by AAV gene therapy.


Assuntos
Doença de Tay-Sachs , Anticonvulsivantes , Dependovirus/genética , Terapia Genética , Humanos , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/terapia
16.
Artigo em Inglês | MEDLINE | ID: mdl-36618998

RESUMO

Background: Late-Onset Tay-Sachs (LOTS) disease is a rare, progressive neurological condition that can dramatically affect the life of these patients. The diagnosis of LOTS is easily missed because of the multifaced presentation of these patients, who can initially be assessed by neuromuscular or movement disorder specialists, or psychiatrists. Clinical trials are now becoming available for LOTS. Therefore, early diagnosis can be detrimental for these patients and for insuring informative research outcomes. Methods: We characterized a cohort of nine patients with LOTS through a detailed clinical and video description. We then reviewed the available literature regarding the clinical description of patients with LOTS. Our findings were summarized based on the predominant phenotype of presentation to highlight diagnostic clues to guide the diagnosis of LOTS for different neurology specialists (neuromuscular, movement disorders) and psychiatrist. Results: We described a cohort of 9 new patients with LOTS seen at our clinic. Our literature review identified 76 patients mainly presenting with a neuromuscular, cerebellar, psychiatric, stuttering, or movement disorder phenotype. Diagnostic tips, such as the triceps sign, distinct speech patterns, early psychiatric presentation and impulsivity, as well as neurological symptoms (cerebellar or neuromuscular) in patients with a prominent psychiatric presentation, are described. Discussion: Specific diagnostics clues can help neurologists and psychiatrists in the early diagnosis of LOTS disease. Our work also represent the first video presentation of a cohort of patients with LOTS that can help different specialists to familiarize with these features and improve diagnostic outcomes. Highlights: Late-Onset Tay-Sachs (LOTS) disease, a severe progressive neurological condition, has multifaced presentations causing diagnostic delays that can significantly affect research outcomes now that clinical trials are available. We highlight useful diagnostic clues from our cohort (including the first video representation of a LOTS cohort) and comprehensive literature review.


Assuntos
Transtornos dos Movimentos , Doença de Tay-Sachs , Humanos , Doença de Tay-Sachs/diagnóstico , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/psicologia , Fenótipo , Músculo Esquelético , Cerebelo
17.
Neurol Sci ; 43(5): 3273-3281, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34800199

RESUMO

PURPOSE: Late-onset Tay-Sachs disease (LOTS) is a form of GM2 gangliosidosis, an autosomal recessive neurodegenerative disorder characterized by slowly progressive cerebellar ataxia, lower motor neuron disease, and psychiatric impairment due to mutations in the HEXA gene. The aim of our work was to identify the characteristic brain MRI findings in this presumably underdiagnosed disease. METHODS: Clinical data and MRI findings from 16 patients (10F/6 M) with LOTS from two centers were independently assessed by two readers and compared to 16 age- and sex-related controls. RESULTS: Lower motor neuron disease (94%), psychiatric symptoms-psychosis (31%), cognitive impairment (38%) and depression (25%)-and symptoms of cerebellar impairment including dysarthria (94%), ataxia (81%) and tremor (69%), were the most common clinical features. On MRI, pontocerebellar atrophy was a constant finding. Compared to controls, LOTS patients had smaller mean middle cerebellar peduncle diameter (p < 0.0001), mean superior cerebellar peduncle diameter (p = 0.0002), mesencephalon sagittal area (p = 0.0002), pons sagittal area (p < 0.0001), and larger 4th ventricle transversal diameter (p < 0.0001). Mild corpus callosum thinning (37.5%), mild cortical atrophy (18.8%), and white matter T2 hyperintensities (12.5%) were also present. CONCLUSION: Given the characteristic clinical course and MRI findings of the pontocerebellar atrophy, late-onset Tay-Sachs disease should be considered in the differential diagnosis of adult-onset cerebellar ataxias.


Assuntos
Doenças Cerebelares , Gangliosidoses GM2 , Doença dos Neurônios Motores , Doença de Tay-Sachs , Adulto , Atrofia , Humanos , Transtornos de Início Tardio , Imageamento por Ressonância Magnética , Doença de Tay-Sachs/diagnóstico por imagem , Doença de Tay-Sachs/genética
18.
Rehabilitacion (Madr) ; 56(2): 164-167, 2022.
Artigo em Espanhol | MEDLINE | ID: mdl-33836908

RESUMO

Tay-Sachs disease, or GM2 gangliosidosis, is a congenital and neurodegenerative disease caused by the absence or deficiency of the essential enzyme B-hexosaminidase. The timing of the development of neurological manifestations and their severity depend on the mutation, time since disease onset and the patient's characteristics. The disease impairs quality of life and increases mortality. In the most aggressive forms, life expectancy is 3 years. Despite various clinical trials and ongoing research, there is currently no cure for Tay-Sachs disease. Treatment focuses on symptom control and ensuring greater patient wellbeing. Consequently, rehabilitation plays a fundamental role in the management of these patients and in enhancing their quality of life.


Assuntos
Doenças Neurodegenerativas , Doença de Tay-Sachs , Humanos , Mutação , Qualidade de Vida , Doença de Tay-Sachs/genética , beta-N-Acetil-Hexosaminidases/genética
19.
J Mol Neurosci ; 72(3): 555-564, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34554397

RESUMO

Lysosomal storage diseases (LSDs) are known as genetic disorders with an overall prevalence of 1 per 7700 live births. Sphingolipidosis, which is a subgroup of LSDs, is resulted from mutations in the coding genes of specific enzymes of sphingolipid hydrolases. The current study aimed to provide additional knowledge on the genotype of sphingolipidoses disease among Iranian patients affected by the disease. In this research, we studied 68 unrelated Iranian patients diagnosed with one kind of sphingolipidoses from 2014 to 2019. Thereafter, genomic DNA was isolated from their peripheral blood leukocytes samples in EDTA in terms of the manufacturer's protocol. All the coding exons and exon-intron boundaries of the related genes were sequenced and then analyzed using the NCBI database. Finally, they were reviewed using some databases such as the Human Gene Mutation Database (HGMD) and ClinVar ( https://www.ncbi.nlm.nih.gov/clinva ). By studying 22 MLD patients, 18 different variations of the ARSA gene were found, one of which was new including, named as c.472 T > G p. (Cys158Gly). Out of 15 Sandhoff disease (SD) patients, 11 different variations of the HEXB gene were found. Correspondingly, the c.1083-2delA was not reported earlier. By investigating 21 Iranian patients with Tay-Sachs disease (TSD), one new variant was found as c.622delG. The study of 10 Niemann-Pick disease A/B (NPDA/B (patients has led to the identification of 9 different SMPD1 gene variations, among which 3 variations were novel mutations. The results of the present study can be expanded to the genotypic spectrum of Iranian patients with MLD, SD, TSD, and NPD diseases and also used to innovate more effective methods for the detection of genetic carriers as well as diagnosing and counseling of Iranian patients affected with these disorders.


Assuntos
Doença de Tay-Sachs , Éxons , Genótipo , Heterozigoto , Humanos , Irã (Geográfico) , Mutação , Esfingomielina Fosfodiesterase , Doença de Tay-Sachs/genética , Cadeia alfa da beta-Hexosaminidase , Cadeia beta da beta-Hexosaminidase/genética
20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-939650

RESUMO

A boy, aged 5 years, attended the hospital due to progressive psychomotor regression for 2.5 years. Motor function regression was the main manifestation in the early stage, and brain MRI and whole-exome sequencing (WES) of the family showed no abnormalities. After the age of 4 years and 9 months, the boy developed cognitive function regression, and brain MRI showed cerebellar atrophy. The reanalysis of WES results revealed a compound heterozygous mutation, [NM_000520, c.784C>T(p.His262Tyr]), c.1412C>T(p.Pro471Leu)], in the HEXA gene. The enzyme activity detection showed a significant reduction in the level of β-hexosaminidase encoded by this gene. The boy was diagnosed with juvenile Tay-Sachs disease (TSD). TSD has strong clinical heterogeneity, and cerebellar atrophy may be an important clue for the diagnosis of juvenile TSD. The reanalysis of genetic data when appropriate based on disease evolution may improve the positive rate of WES.


Assuntos
Humanos , Masculino , Atrofia , Imageamento por Ressonância Magnética , Mutação , Doença de Tay-Sachs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...